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a b s t r a c t 

There is significant interest in pooling magnetic resonance image (MRI) data from multiple datasets to enable mega-analysis. Harmonization is typically performed 

to reduce heterogeneity when pooling MRI data across datasets. Most MRI harmonization algorithms do not explicitly consider downstream application performance 

during harmonization. However, the choice of downstream application might influence what might be considered as study-specific confounds. Therefore, ignoring 

downstream applications during harmonization might potentially limit downstream performance. Here we propose a goal-specific harmonization framework that 

utilizes downstream application performance to regularize the harmonization procedure. Our framework can be integrated with a wide variety of harmonization 

models based on deep neural networks, such as the recently proposed conditional variational autoencoder (cVAE) harmonization model. Three datasets from three 

different continents with a total of 2787 participants and 10,085 anatomical T1 scans were used for evaluation. We found that cVAE removed more dataset differences 

than the widely used ComBat model, but at the expense of removing desirable biological information as measured by downstream prediction of mini mental state 

examination (MMSE) scores and clinical diagnoses. On the other hand, our goal-specific cVAE (gcVAE) was able to remove as much dataset differences as cVAE, 

while improving downstream cross-sectional prediction of MMSE scores and clinical diagnoses. 

1

 

o  

2  

m  

i  

2  

e  

s  

H  

f  

s

 

(  

A

t

i

g  

C  

P  

v  

s  

t

 

r  

(  

O  

f  

w  

s  

t  

u  

h

R

A

1

. Introduction 

Large scale MRI datasets from multiple sites have boosted the study

f human brain structure and function ( Yeo et al., 2011 ; Van Essen et al.,

013 ; Miller et al., 2016 ; Volkow et al., 2018 ). Combining datasets from

ultiple sites can potentially boost statistical power, so there is signif-

cant interest in pooling data across multiple sites ( Thompson et al.,

017 ; Whelan et al., 2018 ; Tang et al., 2020 ; Lu et al., 2020 ). How-

ver, MRI data is sensitive to variation of scanners across different

ites ( Jovicich et al., 2006 ; Magnotta et al., 2012 ; Chen et al., 2014 ;

awco et al., 2018 ), so post-acquisition harmonization is necessary

or removing unwanted variabilities in pooling data across multiple

tudies. 

A popular harmonization approach is the ComBat framework

 Fortin et al., 2017 , 2018 ; Yu et al., 2018 ) that utilizes a mixed effects re-
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ression model to remove additive and multiplicative site effects. Other

omBat variants have since been proposed ( Garcia-Dias et al., 2020 ;

omponio et al., 2020 ; Wachinger et al., 2021 ). However, most ComBat

ariants consider each brain region separately (but see Chen et al. 2019 ),

o might not be able to remove nonlinear site differences that are dis-

ributed across brain regions. 

These nonlinear distributed site differences might be more readily

emoved by harmonization approaches based on deep neural networks

DNNs; ( Tanno et al., 2017 ; Ning et al., 2019 ; Blumberg et al., 2019 ).

ne popular approach is the use of the variational autoencoder (VAE)

ramework ( Moyer et al., 2020 ; Russkikh et al., 2020 ; Zuo et al., 2021 ),

hich typically uses an encoder to generate site-invariant latent repre-

entations. Site information can then be added to the latent represen-

ations to “reconstruct ” the MRI data. Another popular approach is the

se of generative adversarial networks and cycle consistency constraints
Singapore. 
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 Zhu et al., 2017 ; Zhao et al., 2019 ; Dewey et al., 2019 ; Modanwal et al.,

020 ; Bashyam et al., 2021 ). 

However, most previously proposed harmonization approaches do

ot consider downstream applications in the harmonization procedure.

t is important to note that the goal of MRI harmonization is to remove

unwanted’ dataset differences, while preserving relevant biological

nformation. However, unwanted dataset differences depend on the ap-

lication. For example, if our goal is to develop an Alzheimer’s disease

AD) dementia prediction model that is generalizable across different

acial groups, then ‘race’ might be considered an undesirable study dif-

erence. On the other hand, if we are interested in studying AD pro-

ression across different racial groups, then racial information needs to

e preserved in the harmonization process. Therefore, ignoring down-

tream applications in the harmonization procedure might potentially

imit downstream performance. 

In this study, we propose a goal-specific harmonization framework

hat utilizes downstream applications to regularize the harmonization

odel. Our approach can be integrated with most DNN-based harmo-

ization approaches, such as the conditional VAE (cVAE) harmoniza-

ion model ( Moyer et al., 2020 ), which was previously applied to dif-

usion MRI data. We then compared the resulting goal-specific cVAE

gcVAE) model with cVAE and ComBat using three datasets comprising

787 participants and 10,085 anatomical MRI scans. The evaluation pro-

edure tested the ability of different harmonization models to remove

ataset differences while retaining biological information as measured

y downstream cross-sectional prediction of mini mental state examina-

ion (MMSE) scores and clinical diagnoses. 

. Methods 

.1. Datasets 

In this study, we considered T1 structural MRI data from the

lzheimer’s Disease Neuroimaging Initiative (ADNI) ( Jack et al., 2008 ,

010 ), the Australian Imaging, Biomarkers and Lifestyle (AIBL) study

 Ellis et al., 2009 , 2010 ) and the Singapore Memory Ageing and

ognition center (MACC) Harmonization cohort ( Hilal et al., 2015 ;

hong et al., 2017 ; Hilal et al., 2020 ). Data collection was approved by

he Institutional Review Board (IRB) at each corresponding institution.

he analysis in the current study is approved by the National University

f Singapore IRB. Across all three datasets, MRI data was collected at

ultiple timepoints. 

In the case of ADNI ( Jack et al., 2008 , 2010 ), we considered data

rom ADNI1 and ADNI2/Go. For ADNI1, the MRI scans were collected

rom 1.5 to 3T scanners from different vendors (see Table S1 for more

etails). For ADNI2/Go, the MRI scans were collected from 3T scanners.

here were 1735 participants with at least one T1 MRI scan. There was

 total of 7955 MRI scans across the different timepoints of the 1735

articipants. 

In the case of AIBL ( Ellis et al., 2009 , 2010 ), the MRI scans were

ollected from 1.5T and 3T Siemens (Avanto, Tim Trio and Verio) scan-

ers (see Table S2 for more details). There were 495 participants with

t least one T1 MRI scan. There was a total of 933 MRI scans across the

ifferent timepoints of the 495 participants. 

In the case of MACC ( Hilal et al., 2015 ; Chong et al., 2017 ; Hilal et al.,

020 ), the MRI scans were collected from a Siemens 3T Tim Trio scan-

er. There were 557 participants with at least one T1 MRI scan. There

as a total of 1197 MRI scans across the different timepoints of the 557

articipants. 

.2. Data preprocessing 

Our goal is to harmonize volumes of regions of interest (ROIs)

cross datasets. Here, 108 cortical and subcortical ROIs were defined

ased on the FreeSurfer software ( Fischl et al., 2002 ; Desikan et al.,

006 ). In the case of ADNI, we utilized the ROI volumes provided by
2 
DNI. These ROIs were generated by ADNI after several preprocessing

teps ( http://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/ )

ollowed by the FreeSurfer version 4.3 (ADNI1) and 5.1 (ADNI2/GO)

econ-all pipeline. In the case of AIBL and MACC, FreeSurfer version

.0 recon-all pipeline was utilized. Therefore, differences between the

atasets arose from both scanner and preprocessing differences. 

.3. Workflow overview 

In this study, we sought to harmonize brain ROI volumes between

DNI and AIBL, as well as ADNI and MACC. Figs. 1 and 2 illustrate the

orkflow in this study using AIBL as an illustration. The procedure is

xactly the same for MACC. 

In the case of AIBL, we used the Hungarian matching algorithm

 Kuhn, 1955 ) to first select pairs of ADNI and AIBI participants with

atched number of timepoints, age, sex, MMSE and clinical diagnosis

 Fig. 1 A). The distributions of age, sex, MMSE and clinical diagnosis of

ll participants and matched participants are shown in Fig. 3 . 

There were 247 pairs of matched AIBI and ADNI participants with

n average of 1.1 scans per participant. The same approach was applied

o ADNI and MACC, yielding 277 pairs of matched MACC and ADNI

articipants with an average of 1.5 scans per participant. We note that

ot all timepoints have corresponding MMSE and clinical diagnosis in-

ormation. Therefore, care was taken to ensure that all timepoints in

he matched participants had both MMSE and clinical diagnosis. Care

as taken to ensure that all scans of every participant were classified

s either “matched ” or “unmatched ”, and not split between the two cat-

gories. P values showing the quality of the matching procedure are

ound in Tables S3–S9. 

The unmatched ADNI data was used to train goal-specific deep neu-

al networks (DNN) for predicting MMSE and clinical diagnosis ( Fig. 1 B;

etails in Section 2.5 ). Here, clinical diagnosis categories were normal

ontrols, mild cognitive impairment, and Alzheimer’s disease dementia.

he clinical diagnoses from all three datasets were determined by multi-

le criteria, including MRI and cognitive tests. The unmatched ADNI and

IBL participants were also used to fit ComBat and cVAE ( Fig. 1 C; de-

ails in Section 2.6 ). The unmatched AIBL participants and goal-specific

NN (from Fig. 1 B) were utilized for training the gcVAE model ( Fig. 1 C).

he same procedure was applied to ADNI and MACC. 

The trained harmonization models were then applied to unhar-

onized brain volumes of all matched and unmatched participants

 Fig. 2 A). The harmonized data was evaluated with two criteria ( Fig. 2 B

nd C). The first criterion was dataset prediction performance, in which

 machine learning algorithm was used to predict which dataset the

armonized data came from ( Fig. 2 B). Lower dataset prediction per-

ormance indicates better harmonization. More specifically, we trained

 XGBoost classifier ( Chen and Guestrin, 2016 ) using the harmo-

ized ADNI and harmonized AIBL brain volumes from the unmatched

articipants ( Fig. 2 B). We then applied the classifier to the harmo-

ized ADNI and AIBL brain volumes from the matched participants

details in Section 2.8 ). The same procedure was applied to ADNI

nd MACC. 

However, a simple way to achieve perfect dataset prediction results

as to map all brain volumes to zero, thus losing all biological infor-

ation. Therefore, the second criterion was downstream application

erformance ( Fig. 2 C). Here, we applied the goal-specific DNN (from

ig. 1 B) to the harmonized AIBL brain volumes from the matched partic-

pants. To demonstrate the effects of no harmonization, the goal-specific

NN was also applied to the unharmonized AIBL and unharmonized

DNI brain volumes from the matched participants ( Fig. 2 C). The same

rocedure was applied to ADNI and MACC. 

We note that the goal-specific DNN ( Fig. 1 B), harmonization mod-

ls ( Fig. 1 C) and dataset prediction classifier ( Fig. 2 B) were trained

n unmatched data, while harmonization evaluation was performed on

atched data ( Fig. 2 B and C). The matching procedure was important to

nsure that prediction performance was comparable between matched

http://www.adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/
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Fig. 1. Workflow of current study for data matching and model training . We illustrate the workflow using ADNI and AIBL. The same procedure was applied to ADNI and 

MACC. (A) Matching participants to derive test set for harmonization evaluation. (B) Train goal-specific deep neural network (DNN) using unmatched unharmonized 

ADNI data to predict clinical diagnosis and MMSE. (C) Train harmonization models using unmatched unharmonized data. We note that ComBat and cVAE were 

trained using unmatched unharmonized ADNI and AIBL data, while gcVAE was trained using unmatched unharmonized AIBL data and the goal-specific DNN (from 

Fig. 1 B). Dark colors (e.g., dark red and dark blue) are used to indicate unmatched participants, while light colors (e.g., pink and light blue) are used to indicate 

matched participants. 
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DNI and matched AIBI participants. Suppose we did the opposite:

rained a clinical diagnosis prediction model on matched ADNI partic-

pants and then tested the model on unmatched ADNI and unmatched

IBL participants. In this scenario, the clinical diagnosis prediction per-

ormance would not be comparable between unmatched ADNI and un-

atched AIBL participants. More specifically, suppose unmatched ADNI

omprised mostly participants with AD and healthy participants, as well

s few participants with mild cognitive impairment (MCI). On the other

and, suppose AIBL contained equal proportions of healthy participants,

articipants with MCI and participants with AD. In this scenario, because

t is easier to distinguish between healthy controls and participants with

D, compared with distinguishing participants with MCI from the other

wo classes (participants with AD and healthy participants), the predic-

ion performance would likely be better in unmatched ADNI compared

ith unmatched AIBL, even if there was no scanner difference between

he two sites. By testing prediction performance on matched AIBL and

atched ADNI participants, we ensure that any drop in prediction per-

ormance was due to unavoidable site differences, such as scanner dif-
erences. h

3 
.4. Training, validation and test procedure 

As mentioned in the previous section, the matched participants were

sed as the test set for evaluation ( Fig. 2 C). The unmatched participants

ere used for training the goal-specific DNN ( Fig. 1 B), harmonization

 Fig. 1 C) and dataset prediction ( Fig. 2 B) models. More specifically, we

ivided the unmatched participants into 10 groups. Recall that a partici-

ant might be scanned at multiple timepoints. Care was taken to ensure

hat all timepoints of any participant were assigned to be in a single

roup, and not split across multiple groups. 

To train the goal-specific DNN, harmonization and dataset prediction

odels, 9 groups were used for training, while the remaining group was

sed as a validation set to tune the hyperparameters. This procedure

as repeated 10 times with a different group being the validation set.

herefore, we ended up with 10 sets of trained models. The 10 sets of

armonization models were applied to the unharmonized data ( Fig. 2 A),

ielding 10 sets of harmonized data. The 10 sets of XGBoost classifiers

nd goal-specific DNNs were applied to the 10 corresponding sets of

armonized data for evaluation ( Fig. 2 B and C). 
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Fig. 2. Workflow of current study for data harmonization and performance evaluation . We illustrate the workflow using ADNI and AIBL. The same procedure was 

applied to ADNI and MACC. (A) Harmonize data using trained harmonization models from Fig. 1 C. (B) Evaluate harmonization performance using XGBoost dataset 

prediction model. (C) Evaluate harmonization performance using goal-specific DNN ( Fig. 1 B) to predict MMSE and clinical diagnosis. We note that dark colors (e.g., 

dark red and dark blue) are used to indicate unmatched participants, while light colors (e.g., pink and light blue) are used to indicate matched participants. On the 

other hand, octagons are used to indicate unharmonized data, while rectangles (with rounded corners) are used to indicate harmonized data. 
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.5. Goal-specific DNNs 

Here we utilized DNNs to predict MMSE and clinical diagno-

is (normal controls, mild cognitive impairment or Alzheimer’s dis-

ase dementia) jointly. The goal-specific DNNs were used to train

he gcVAE model ( Fig. 1 C) and evaluate the harmonization ap-

roaches ( Fig. 2 C). The inputs to the goal-specific DNNs were the

rain ROI volumes. 10 DNNs were trained with a 10-fold cross-

alidation procedure ( Section 2.4 ) using the unmatched unharmo-
4 
ized ADNI MRI volumes ( Fig. 1 B). The training procedure utilized

he unharmonized ADNI data without differentiation among ADNI

ites. 

Recall that not all unmatched timepoints had MMSE and clinical di-

gnosis information. Therefore, we used the previous timepoint with

vailable information to fill in the missing data ( Lipton et al., 2016 ;

he et al., 2018 ; Nguyen et al., 2020 ). Note that this filling in proce-

ure was only performed during training procedure for the unmatched

articipants. 
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Fig. 3. Age, MMSE, sex and clinical diagnosis distributions before and after matching . (A) Distributions of age, sex, MMSE and clinical diagnosis for ADNI (blue) and 

AIBL (red). Differences in the attributes between ADNI and AIBL were not significant after matching. (B) Distributions of age, sex, MMSE and clinical diagnosis for 

ADNI (blue) and MACC (yellow). Differences in the attributes between ADNI and MACC were not significant after matching. P values showing the quality of the 

matching procedure are found in Tables S3–S9. 

 

n  

l  

u  

m  

f  

t  

v

 

w

D  

h  

S  

s  

D

 

The architecture of the goal-specific DNN was a generic feedforward

eural network, where every layer was fully connected with the next

ayer. The nonlinear activation function ReLU ( Maas et al., 2013 ) was

tilized. The DNN loss function corresponded to the weighted sum of the

ean absolute error (MAE) for MMSE prediction and cross entropy loss

or clinical diagnosis prediction: L goalDNN = 𝜆MMSE MAE + 𝜆DX CrossEn-

ropy. 𝜆MMSE and 𝜆DX were two hyperparameters that were tuned on the

alidation set. 
a  

5 
The metric for tuning hyperparameters in the validation set was the

eighted sum of MMSE MAE and clinical diagnosis accuracy: 1 2 MAE –

iagnosis Accuracy. The MAE term was divided by two so the two terms

ad similar ranges of values. We utilized the HORD algorithm ( Regis and

hoemaker, 2013 ; Ilievski et al., 2017 ; Eriksson, 2019 ) to find the best

et of hyperparameters using the validation set ( Table 1 ). The trained

NN after 100 epochs was utilized for subsequent analyses. 

At the evaluation phase ( Fig. 2 C), the 10 goal-specific DNNs were

pplied to the harmonized brain volumes from the matched AIBL partic-
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Table 1 

Hyperparameters estimated from the 

validation set. We note that a learning 

rate decay strategy was utilized. After 

K training epochs (where K = learn- 

ing rate step), the learning rate was re- 

duced by a factor of 10. 

Hyperparameter Search range 

Initial learning rate 1e-4–1e-3 

Learning rate step 10–99 

Dropout rate 0–0.5 

𝜆MMSE 0–1 

𝜆DX 0–1 

Nodes for each layer 32–512 

Number of layers 2–5 
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Fig. 4. cVAE and gcVAE model structures . (A) Model structure for the cVAE 

model. Encoder, decoder, and discriminator were all fully connected feedfor- 

ward DNNs. 𝑠 was the site we wanted to map the brain volumes to. (B) Model 

structure for the gcVAE model. The goal-specific DNN from Section 2.5 ( Fig. 1 B) 

was used to guide the cVAE harmonization process. During training of gcVAE, 

the weights of the goal-specific DNN were fixed. 
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n  
pants, as well as unharmonized brain volumes from the matched AIBL

nd ADNI participants. The prediction performance was averaged across

ll time points of each participant and the 10 goal-specific DNNs before

veraging across participants. The same procedure was applied to ADNI

nd MACC participants. 

.6. Baseline harmonization models 

Here, we considered ComBat ( Johnson et al., 2007 ) and cVAE

 Moyer et al., 2020 ) as baseline models. 

.6.1. ComBat 

ComBat is a linear mixed effects model that controls for addi-

ive and multiplicative site effects ( Johnson et al., 2007 ). Here we

tilized the R implementation of the algorithm ( https://github.com/

fortin1/ComBatHarmonization ). The ComBat model is as follows: 

 ijv = 𝛼𝑣 + 𝑌 𝑇 
ij 
𝛽𝑣 + 𝛾iv + 𝛿iv 𝜀 ijv (1) 

here 𝑖 is the site index, 𝑗 is the participant index and 𝑣 is the brain ROI

ndex. 𝑥 𝑖𝑗𝑣 is the volume of the 𝑣 th brain ROI of subject 𝑗 from site 𝑖 . 𝛾𝑖𝑣 
s the addictive site effect. 𝛿𝑖𝑣 is the multiplicative site effect. 𝜖𝑖𝑗𝑣 is the

esidual error term following a normal distribution with zero mean and

ariance δ2 v . 𝑌 𝑖𝑗 are the covariates of subject 𝑗 from site 𝑖 . 

The ComBat parameters 𝛼𝑣 , 𝛽𝑣 , 𝛾𝑖𝑣 and 𝛿𝑖𝑣 were estimated for each

rain ROI using the unmatched unharmonized ROI volumes ( Fig. 1 C).

he estimated parameters can then be applied to a new participant 𝑖

rom site 𝑗 with brain volume 𝑖 from site 𝑥𝑖𝑗𝑣 and covariates 𝑌 𝑖𝑗 

 

𝐶𝑜𝑚𝐵𝑎𝑡 
𝑖𝑗𝑣 

= 

𝑥 𝑖𝑗𝑣 − �̂� 𝑣 − 𝑌 𝑇 
𝑖𝑗 
𝛽𝑣 − ̂𝛾𝑖𝑣 

𝛿𝑖𝑣 

+ �̂� 𝑣 + 𝑌 𝑇 
𝑖𝑗 
𝛽𝑣 (2)

here ̂  indicates that the parameter was estimated from the unmatched

nharmonized ROI volumes from ADNI and AIBL. A separate ComBat

odel was fitted for ADNI and MACC brain volumes. Observe that the

quation required the covariates of the new participant. Given that we

ould like to predict MMSE and clinical diagnosis in the matched partic-

pants, this implied that MMSE and clinical diagnosis information were

ot available in the matched participants. Therefore, we could not uti-

ize MMSE and clinical diagnosis as covariates in the ComBat model.

herefore, in the main results, we only utilized age and sex as covari-

tes. However, as a control analysis ( Section 2.9.3 ), we also considered

 version of ComBat where age, sex, MMSE and clinical diagnosis were

sed as covariates. 

Furthermore, since the goal-specific DNNs were trained with un-

atched unharmonized ADNI data without distinguishing among the

ites ( Section 2.5 ), for consistency, the ComBat procedure also treated

DNI as a single site despite the data coming from multiple sites and

canners. This was also the case for AIBL. 

Note that Eq. (2) mapped both ADNI and AIBL data to an “interme-

iate ” space, which is not an issue for the purpose of dataset predic-

ion because the XGBoost classifier was trained from scratch ( Fig. 2 B;
6 
ection 2.8 ). However, for the purpose of predicting MMSE and clinical

iagnosis, since the goal-specific DNN was trained with unharmonized

DNI data, we used the ref.batch option in the ComBat package to map

IBL data to “ADNI-space ” after harmonization. The same procedure

as applied to ADNI and MACC. 

.6.2. cVAE 

The conditional variational autoencoder (cVAE) model was proposed

y Moyer and colleagues to harmonize diffusion MRI data ( Moyer et al.,

020 ). Here, we applied cVAE to harmonize brain ROI volumes. The

VAE model is illustrated in Fig. 4 A. Input brain volumes were passed

hrough an encoder DNN yielding representation 𝑧 . Site index 𝑠 was

oncatenated with the latent representation z before feeding into the

ecoder DNN, resulting in the reconstructed brain volumes �̂� . By incor-

orating the mutual information 𝐼( 𝑧, 𝑠 ) in the cost function, this encour-

ged the learned representation 𝑧 to be independent of the site 𝑠 . The

esulting lost function is as follows: 

 cVAE = 𝐿 recon + 𝛼𝐿 prior − 𝛾𝐿 adv + 𝜆𝐼 ( 𝑧, 𝑠 ) (3) 

here 𝐿 𝑟𝑒𝑐𝑜𝑛 is the mean square error (MSE) between 𝑥 and �̂� , so this

ncouraged the harmonized volumes to be similar to the unharmonized

olumes. To further encourage 𝑥 and �̂� to be similar, Moyer and col-

eagues added an additional term 𝐿 𝑎𝑑𝑣 , which is the soft-max cross-

ntropy loss of an adversarial discriminator seeking to distinguish be-

ween 𝑥 and �̂� . Finally, 𝐿 𝑝𝑟𝑖𝑜𝑟 is the standard KL divergence between

epresentation 𝑧 and the multivariate Gaussian distribution with zero

ean and identity covariance matrix ( Sohn et al., 2015 ). 

Both the decoder and encoder were instantiated as generic feedfor-

ard neural networks, where every layer was fully connected with the

ext layer. Following Moyer and colleagues, the nonlinear activation

https://www.github.com/Jfortin1/ComBatHarmonization
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Table 2 

Hyperparameters estimated from the 

validation set. We note that a learning 

rate decay strategy was utilized. After 

K training epochs (where K = learn- 

ing rate step), the learning rate was re- 

duced by a factor of 10. 

Hyperparameter Search range 

Initial learning rate 1e-2–1e-1 

Learning rate step 10–999 

Dropout rate 0–0.5 

𝛼 0.01–1 

𝛾 0.01–10 

𝜆 0.01–1 

Nodes for each layer 32–512 

Number of layers 2–4 

Node for z 32–512 
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unction tanh ( Maas et al., 2013 ) was utilized. During the training pro-

ess, 𝑠 is the true site information for input brain volumes 𝑥 . After train-

ng, we could map input 𝑥 to any site by changing 𝑠 . The metric for tun-

ng hyperparameters in the validation set was the weighted sum of the

econstruction loss (MSE between 𝑥 and �̂� ) and the subject-level dataset

rediction accuracy: 1 2 MSE + Dataset Accuracy. The MSE reconstruc-

ion loss was divided by two so the two terms had similar ranges of

alues. Dataset prediction accuracy was obtained by training a XGBoost

lassifier on the training set and applying to the validation set. We uti-

ized the HORD algorithm ( Regis and Shoemaker, 2013 ; Ilievski et al.,

017 ; Eriksson, 2019 ) to find the best set of hyperparameters using the

alidation set ( Table 2 ). The trained DNN after 1000 epochs was utilized

or subsequent analyses. 

Similar to ComBat, the cVAE model was trained using unmatched

nharmonized brain volumes from ADNI and AIBL. A separate model

as trained using ADNI and MACC. For consistency, the cVAE model

lso treated ADNI and AIBL as single sites. 

Similar to ComBat, for the purpose of dataset prediction, data were

apped to intermediate space by setting the site 𝑠 to 0 during harmo-

ization. On the other hand, for the purpose of predicting MMSE and

linical diagnosis, data from AIBL (and MACC) was mapped to ADNI

pace by setting the site s to correspond to ADNI. 

.7. Goal-specific cVAE (gcVAE) 

To incorporate downstream application performance in the harmo-

ization procedure, the outputs of the cVAE ( Fig. 4 A) were fed into the

oal-specific DNN ( Section 2.5 ). The resulting goal-specific cVAE (gc-

AE) is illustrated in Fig. 4 B. The loss function of the gcVAE was given

y corresponded to the weighted sum of the mean absolute error (MAE)

or MMSE prediction and cross entropy loss for clinical diagnosis pre-

iction: 

 gcVAE = 𝛼MMSE MAE + 𝛼DX Cros sEnt ropy (4) 

here 𝛼MMSE and 𝛼DX were two hyperparameters to be tuned with the

alidation set. The loss function was used to finetune the trained cVAE

odel ( Section 2.6.2 ) using the training set with a relatively small learn-

ng rate. We note that the weights of the goal-specific DNN model were

rozen during this finetuning procedure. 

The metric for tuning hyperparameters in the validation set was the

eighted sum of MMSE MAE and clinical diagnosis accuracy: 1 2 MAE –

iagnosis Accuracy (same as Section 2.5 ). Since there were only three

yperparameters (learning rate, 𝛼MMSE and 𝛼DX ), a grid search was per-

ormed using the validation set to find the best set of hyperparameters.

The gcVAE model was trained using unmatched unharmonized brain

olumes from AIBL. A separate model was trained using ADNI and

ACC. For consistency, the gcVAE model also treated ADNI and AIBL

s single sites. 
7 
Similar to ComBat, for the purpose of dataset prediction, data were

apped to intermediate space by setting the site 𝑠 to 0 during harmo-

ization. On the other hand, for the purpose of predicting MMSE and

linical diagnosis, data from AIBL (and MACC) was mapped to ADNI

pace by setting the site 𝑠 to correspond to ADNI. 

.8. Dataset prediction model 

As one evaluation criterion, we utilized XGBoost to predict which

ataset the harmonized brain volumes came from ( Fig. 2 B). The inputs

o the XGBoost model were the brain volumes divided by the total in-

racranial volume (ICV) of each participant. We used logistic regression

s the objective function and ensemble of trees as the model structure.

ecall that there were 10 groups of harmonized data because of our

0-fold cross-validation procedure ( Section 2.4 ). Therefore, 10 XGBoost

lassifiers were trained using harmonized MRI volumes from unmatched

DNI and AIBL participants ( Fig. 2 B). For each XGBoost classifier, we

sed a grid search using the validation group to find the optimal set of

yperparameters. 

For evaluation, the 10 XGBoost classifiers were applied to harmo-

ized MRI volumes of matched ADNI and AIBL participants ( Fig. 2 B).

he prediction accuracy was averaged across all time points of each par-

icipant and the 10 classifiers before averaging across participants. The

ame procedure was applied to ADNI and MACC participants. 

Here, we chose to use XGBoost because it is a powerful classifier for

nstructured or tabular data ( Grinsztajn and Oyallon, 2022 ; Shwartz-

iv and Armon, 2022 ). Using a DNN instead of XGBoost is unlikely to

ield very different dataset prediction performance. On the other hand,

GBoost is less sensitive to the choice of hyperparameters compared

ith DNN, so hyperparameter tuning (and thus training) was a lot faster

or XGBoost. Therefore, we chose to use XGBoost for dataset prediction.

y contrast, a DNN was utilized for predicting MMSE and clinical diag-

osis (i.e., goal-specific DNN), so that the gradients of the goal-specific

NN can be backpropagated to guide the training of the gcVAE model

 Section 2.7 ). 

.9. Further analyses 

We performed four additional analyses to study the effectiveness of

he proposed gcVAE approach. 

.9.1. Effects of training set size 

To investigate the effect of training set size on harmonization quality,

e repeated the previous analyses ( Figs. 1 and 2 ), except that when

raining harmonization models ( Fig. 1 C), the training set size was varied

y sampling 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80 or 90% from

he unmatched participants. We repeated this procedure 10 times. 

.9.2. Association analyses 

We further investigated the association of the harmonized brain vol-

mes with age, sex, MMSE and clinical diagnosis. We considered all 87

ortical and subcortical gray matter ROIs. For each continuous measure

age or MMSE) and for each ROI, we computed the Pearson’s correla-

ion between the harmonized ROI volume and the continuous measure

cross matched ADNI and matched AIBL participants. In the case of age,

e expected a negative correlation between age and harmonized ROI

olumes, so a stronger negative correlation indicates better harmoniza-

ion. In the case of MMSE, we expect a positive correlation between

MSE and harmonized ROI volumes because lower MMSE indicates

reater cognitive decline. Therefore, a greater positive correlation in-

icates better harmonization. For each discrete variable (clinical diag-

osis or sex), we computed 𝜂2 from running ANOVA on the matched

DNI and matched AIBL participants. Greater 𝜂2 indicates greater dif-

erences across the groups (e.g., male versus female), suggesting better

armonization. The same procedure was applied to ADNI and MACC. 
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.9.3. ComBat with additional covariates 

As discussed previously, in our main analyses, we only used age and

ex as covariates for the ComBat baseline ( Section 2.6.1 ). Here, we also

onsidered a ComBat variant, where age, sex, MMSE and clinical diagno-

is were used as covariates. We note that this version of ComBat assumed

hat MMSE and clinical diagnosis information were known in the test set

matched participants). Therefore, the prediction performance of Com-

at (with the additional covariates) was corrupted by test set leakage

nd was not valid. 

.9.4. Reversing the roles of the matched and unmatched participants 

In the original analyses ( Figs. 1 and 2 ), the harmonization models,

oal-specific DNNs and dataset prediction models were trained on un-

atched participants. The evaluations were then performed on matched

articipants ( Fig. 2 B and C). 

In this analysis, we reversed the roles of the matched and unmatched

articipants (Figs. S1 and S2) with two exceptions. First, the prediction

erformance of unmatched unharmonized ADNI and unmatched un-

armonized AIBL participants was not comparable, so the downstream

pplication performance was only evaluated on unmatched unharmo-

ized AIBL and unmatched harmonized AIBL data (compare Fig. S2C

nd Fig. 2 C). 

Second, given the number of matched participants were so small, the

raining of the goal-specific DNN would not be effective. Therefore, the

oal-specific DNN was trained with all (both matched and unmatched)

DNI participants (compare Fig. S1B and Fig. 1 B). We note that this is

ot an issue since the downstream application performance no longer

tilized any ADNI data (Fig. S2C). 

.10. Deep neural network implementation 

All DNNs were implemented using PyTorch ( Paszke et al., 2017 ) and

omputed on NVIDIA RTX 3090 GPUs with CUDA 11.0. To optimize the

NNs, we used the Adam optimizer ( Kingma et al., 2014 ) with default

yTorch settings. 

.11. Statistical tests 

Two-sided two-sample t-tests were utilized to test for differences in

ge and MMSE between matched participants of AIBI and ADNI (as well

s MACC and ADNI). In the case of sex and clinical diagnoses, we utilized

hi-squared tests. 

As discussed in Sections 2.5 and 2.8 , prediction performance was

veraged across all time points of each participant and across the 10

ets of models, yielding a single prediction performance for each par-

icipant. Therefore, for each dataset, harmonization approach and eval-

ation metric, we obtained a performance vector where each element

epresented one participant. When comparing dataset prediction per-

ormance (or goal-specific prediction performance) between two har-

onization approaches, a permutation test with 10,000 permutations.

ach permutation involves randomly swapping the entries between the

erformance vectors of the two approaches. Fig. S3 illustrates this per-

utation procedure in more details. 

Multiple comparisons were corrected with a false discovery rate

FDR) of q < 0.05. 

.12. Data and code availability 

Code for the various harmonization algorithms can be found

ere ( https://github.com/ThomasYeoLab/CBIG/tree/master/stable _

rojects/predict _ phenotypes/An2022 _ gcVAE ). Two co-authors (PC and

Z) reviewed the code before merging it into the GitHub repository to

educe the chance of coding errors. 

The ADNI and the AIBL datasets can be accessed via the Image & Data

rchive ( https://ida.loni.usc.edu/ ). The MACC dataset can be obtained

ia a data-transfer agreement with the MACC ( http://www.macc.sg/ ). 
8 
. Results 

.1. cVAE & gcVAE removed more dataset differences than ComBat 

Fig. 5 A shows the dataset prediction performance for the matched

DNI and AIBL participants. Before harmonization, the XGBoost clas-

ifier was able to predict which dataset a participant came from

ith 100% accuracy. After applying ComBat, the prediction accuracy

ropped to 0.626 ± 0.410 (mean ± std), suggesting significant removal

f dataset differences. After applying cVAE and gcVAE, dataset predic-

ion performance dropped to 0.595 ± 0.381 and 0.603 ± 0.382 respec-

ively, which were significantly lower than ComBat ( Table 3 ). There was

o statistical difference between cVAE and gcVAE. However, dataset

rediction accuracies for cVAE and gcVAE were still better than chance

p = 1e-4), suggesting residual dataset differences. 

Similar results were obtained for matched ADNI and MACC par-

icipants ( Fig. 5 B). Before harmonization, the XGBoost classifier was

ble to predict which dataset a participant came from with 100% ac-

uracy. Dataset prediction accuracies after ComBat, cVAE and gcVAE

ere 0.721 ± 0.392, 0.603 ± 0.391 and 0.598 ± 0.398, respectively.

here was no statistical difference between cVAE and gcVAE. Both cVAE

nd gcVAE had statistically lower dataset prediction performance than

omBat ( Table 4 ). 

Overall, cVAE and gcVAE appeared to remove more dataset differ-

nces than ComBat. However, dataset prediction accuracies for cVAE

nd gcVAE were still better than chance (p = 1e-4), suggesting residual

ataset differences. 

.2. gcVAE outperformed cVAE for clinical diagnosis prediction 

Fig. 6 A shows the clinical diagnosis prediction accuracies for

atched ADNI and AIBL participants. Because the matched partici-

ants had similar age, sex, MMSE and clinical diagnosis ( Fig. 3 ), com-

arison between unharmonized ADNI and unharmonized AIBL partic-

pants would indicate whether there was a drop in prediction perfor-

ance due to dataset differences (e.g., scanner differences). Unexpect-

dly, there was no statistical difference in clinical diagnosis prediction

erformance between unharmonized ADNI and unharmonized AIBL par-

icipants ( Table 5 ). 

Applying ComBat resulted in a statistically significant drop in predic-

ion performance (p = 7e-4) compared with no harmonization. This sug-

ests that ComBat removed biological information in addition to dataset

ifferences ( Fig. 5 A). cVAE exhibited an even bigger drop in predic-

ion performance compared with ComBat (p = 1e-4), suggesting that

he better removal of dataset differences ( Fig. 5 A) came at the expense

f removing even more biological information. gcVAE yielded the best

rediction performance with statistically significant improvements over

ll other approaches, including unharmonized ADNI (see p values in

able 5 ). 

Fig. 6 B shows the clinical diagnosis prediction accuracies for

atched ADNI and MACC participants. As expected, there was a sig-

ificant drop in clinical diagnosis prediction performance between un-

armonized ADNI and unharmonized MACC participants (p = 1e-4).

he decrease in clinical diagnosis performance was worsened by Com-

at and cVAE, once again suggesting that the removal of dataset dif-

erences ( Fig. 5 B) came at the expense of also removing biological

nformation. gcVAE recovered a significant portion of the decrease

n prediction performance, such that it was not statistically different

rom unharmonized MACC ( Table 6 ). However, it was still signifi-

antly worse than unharmonized ADNI, suggesting potential room for

mprovement. 

.3. gcVAE outperformed cVAE in MMSE prediction 

Fig. 7 A shows the MMSE prediction mean absolute error (MAE) for

atched ADNI and AIBL participants. Because the matched participants

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/An2022_gcVAE
https://ida.loni.usc.edu/
http://www.macc.sg/
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Fig. 5. Dataset prediction accuracies . (A) Left: Dataset prediction accuracies for matched ADNI and AIBL participants. Right: p values of differences between different 

approaches. " ∗ " indicates statistical significance after surviving FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for matched ADNI and 

MACC participants. All p values are reported in Tables 3 and 4 . 

Table 3 

Dataset prediction accuracies with p values of differences between different approaches for matched ADNI and AIBL 

participants. Statistically significant p values after FDR ( q < 0.05) corrections are bolded. 

Dataset Prediction Accuracies (mean ± std) p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (1.000 ± 0.027) 1e-4 1e-4 1e-4 

ComBat (0.626 ± 0.410) 0.0055 0.0410 

cVAE (0.595 ± 0.381) 0.1754 

gcVAE (0.603 ± 0.382) 
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ad similar age, sex, MMSE and clinical diagnosis, comparison between

nharmonized ADNI and unharmonized AIBL participants would indi-

ate whether there was a drop in prediction performance due to dataset

ifferences (e.g., scanner differences). As expected, there was a drop in

MSE prediction performance (increased MAE) for unharmonized AIBL

articipants compared with unharmonized ADNI participants (p = 1e-

). 

There was no statistical difference between ComBat and the unhar-

onized AIBL participants. cVAE had statistically worse MMSE pre-

iction performance compared with all other approaches (p values in

able 7 ). gcVAE recovered a significant portion of the decrease in predic-

ion performance, such that prediction performance was not statistically

ifferent from ComBat and unharmonized AIBL ( Table 7 ). However, it

as still statistically worse than unharmonized ADNI, suggesting further

oom for improvement. 
fi  

9 
Fig. 7 B shows the MMSE prediction MAE for matched ADNI and

ACC participants. As expected, there was a drop in MMSE predic-

ion performance (increased MAE) for unharmonized MACC participants

ompared with unharmonized ADNI participants ( p = 1e-4). Both Com-

at and cVAE caused further drop in prediction performance ( p values

n Table 8 ). gcVAE had the best prediction performance (lowest MAE),

uch that prediction performance was statistically better than unhar-

onized MACC and not statistically different from unharmonized ADNI

 Table 8 ). 

.4. Further analyses 

.4.1. Effects of training set size 

We investigated the effects of varying the training set size used for

tting the harmonization models ( Fig. 1 C). Across all sample sizes, cVAE
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Table 4 

Dataset prediction accuracies with p values of differences between different approaches for matched ADNI and MACC 

participants. Statistically significant p values after FDR ( q < 0.05) corrections are bolded. 

Dataset Prediction Accuracies (mean ± std) p values 

Unharm ComBat cVAE gcVAE 

Unharmonized (1.00 ± 1e-16) 1e-4 1e-4 1e-4 

ComBat (0.721 ± 0.392) 1e-4 1e-4 

cVAE (0.603 ± 0.391) 0.3584 

gcVAE (0.598 ± 0.398) 

Fig. 6. Clinical diagnosis prediction accuracies . (A) Left: Clinical diagnosis prediction accuracies for matched ADNI and AIBL participants. Right: pvalues of differences 

between different approaches. " ∗ " indicates statistical significance after surviving FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same as (A) but for 

matched ADNI and MACC participants. All p values are reported in Tables 5 and 6 . 
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nd gcVAE generally achieved lower dataset prediction accuracies than

omBat ( Fig. 8 A). Across all sample sizes, gcVAE achieved better clin-

cal diagnosis prediction than cVAE and ComBat ( Fig. 8 B). Across all

ample sizes for MACC, gcVAE achieved better MMSE prediction than

VAE and ComBat ( Fig. 8 C2). Across all sample sizes for AIBL ( Fig. 8 C1),

cVAE achieved better MMSE prediction than cVAE; gcVAE achieved

orse prediction than ComBat. Overall, across all sample sizes, gcVAE

ompared favorably with cVAE and ComBat. 

In the case of ComBat, larger sample sizes led to worse dataset pre-

iction accuracies (i.e., better harmonization). However, sample sizes

ave minimal effect on clinical diagnosis and MMSE prediction. In the

ase of cVAE, greater sample sizes led to better MMSE prediction for

oth AIBL and MACC participants, better clinical diagnosis prediction

or MACC participants, worse clinical diagnosis prediction for AIBL par-

icipants, and better dataset prediction accuracies. In the case of gcVAE,

reater sample sizes led to better MMSE and clinical diagnosis prediction

or both AIBL and MACC participants, as well as better dataset predic-
10 
ion accuracies. Overall, for both cVAE and gcVAE, larger sample sizes

ppeared to improve downstream application performance (i.e., MMSE

nd clinical diagnosis prediction), but at the expense of dataset predic-

ion performance. 

.4.2. Association analyses 

Fig. 9 shows the association analyses between gray matter ROI vol-

mes and four variables (age, sex, MMSE and clinical diagnoseis) among

atched ADNI and AIBL participants. Fig. 10 shows the same analy-

es for matched ADNI and MACC participants. For each scatter plot,

ore dots in the green region indicates better gcVAE performance com-

ared with the baseline. gcVAE clearly outperformed no harmonization

 Figs. 9 A and 10 A) and ComBat ( Figs. 9 B and 10 B) in both datasets. On

he other hand, cVAE and gcVAE exhibited comparable performance

 Figs. 9 C and 10 C) in both datasets. 
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Table 5 

Clinical diagnosis prediction accuracies with p values of differences between different approaches for matched ADNI and AIBL partici- 

pants. Statistically significant p values after FDR (q < 0.05) corrections are bolded. 

Clinical Diagnosis Prediction Accuracies (mean ± std) p values 

Unharm 

ADNI 

Unharm 

AIBL ComBat cVAE gcVAE 

Unharm ADNI (0.48 ± 0.33) 0.5171 0.0077 1e-4 2e-4 

Unharm AIBL (0.47 ± 0.23) 7e-4 1e-4 1e-4 

ComBat (0.41 ± 0.34) 1e-4 1e-4 

cVAE (0.26 ± 0.29) 1e-4 

gcVAE (0.69 ± 0.41) 

Table 6 

Clinical diagnosis prediction accuracies with p values of differences between different approaches for matched ADNI and MACC participants. Statistically 

significant p values after FDR (q < 0.05) corrections are bolded. 

Clinical Diagnosis Prediction Accuracies (mean ± std) 

p values 

Unharm ADNI 

Unharm 

MACC ComBat cVAE gcVAE 

Unharm ADNI (0.63 ± 0.33) 1e-4 1e-4 1e-4 1e-4 

Unharm MACC (0.45 ± 0.29) 0.0124 1e-4 0.0545 

ComBat (0.42 ± 0.35) 2e-4 0.0065 

cVAE (0.36 ± 0.26) 1e-4 

gcVAE (0.49 ± 0.30) 

Fig. 7. MMSE prediction errors as measured by mean absolute error (MAE) . (A) Left: MMSE prediction errors for matched ADNI and AIBL participants. Right: p values 

of differences between different approaches. " ∗ " indicates statistical significance after surviving FDR correction (q < 0.05). "n.s." indicates not significant. (B) Same 

as (A) but for matched ADNI and MACC participants. All p values are reported in Tables 7 and 8 . 

11 
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Table 7 

MMSE prediction errors with p values of differences between different approaches for matched ADNI and AIBL participants. Statistically 

significant p values after FDR (q < 0.05) corrections are bolded. 

MMSE Prediction MAE (mean ± std) 

p values 

Unharm 

ADNI 

Unharm 

AIBL ComBat cVAE gcVAE 

Unharm ADNI (1.60 ± 2.17) 1e-4 0.0061 1e-4 1e-4 

Unharm AIBL (1.86 ± 2.32) 0.4339 0.0054 0.0756 

ComBat (1.82 ± 2.07) 0.0322 0.1473 

cVAE (2.09 ± 3.29) 0.0023 

gcVAE (1.97 ± 2.93) 

Table 8 

MMSE prediction errors with p values of differences between different approaches for matched ADNI and MACC participants. Statistically 

significant p values after FDR (q < 0.05) corrections are bolded. 

MMSE Pred MAE (mean ± std) 

p values 

Unharm 

ADNI 

Unharm 

MACC ComBat cVAE gcVAE 

Unharm ADNI (4.26 ± 3.87) 1e-4 1e-4 1e-4 0.9570 

Unharm MACC (5.09 ± 4.66) 1e-4 1e-4 1e-4 

ComBat (5.61 ± 5.03) 1e-4 1e-4 

cVAE (5.96 ± 5.50) 1e-4 

gcVAE (4.25 ± 3.57) 
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.4.3. ComBat with additional covariates 

Our main analysis utilized ComBat with age and sex as covariates.

ere, we considered ComBat with age, sex, MMSE and clinical diagnosis

s covariates. We note that this version of ComBat assumed that MMSE

nd clinical diagnosis information were known in the test set (matched

articipants). Therefore, the prediction performance of ComBat (with

he additional covariates) was corrupted by test set leakage and was not

alid. 

The additional covariates led to better MMSE and clinical diagnosis

rediction by ComBat (Tables S10 and S11). In the case of AIBL, clin-

cal diagnosis prediction remained statistically worse than gcVAE, but

MSE prediction was now statistically better than gcVAE. In the case

f MACC, clinical diagnosis prediction was now comparable with gc-

AE, but MMSE prediction remained worse than gcVAE. Interestingly,

he additional covariates led to greater dataset prediction accuracies for

oth ADNI-AIBL and ADNI-MACC, suggesting worse harmonization. To-

ether, gcVAE remained better than ComBat. 

.4.4. Reversing the roles of the matched and unmatched participants 

In this analysis, we reversed the roles of matched and unmatched

articipants ( Section 2.9.4 ). Similar to the original main analyses, we

ound that gcVAE compared favorably with both ComBat and cVAE

Figs. S4–S6; Tables S12–S17). 

More specifically, recall that there were six evaluation metrics (two

or dataset prediction, two for diagnosis prediction and two for MMSE

rediction). gcVAE was statistically better than ComBat for both dataset

rediction metrics and two downstream application performance met-

ics, while being statistically worse than ComBat in one downstream

pplication performance metric (Figs. S4–S6; Tables S12–S17). On the

ther hand, gcVAE was statistically worse than cVAE for the two dataset

rediction metrics, but statistically better than cVAE for the four down-

tream application performance metrics (Figs. S4–S6; Tables S12–S17).

herefore, similar to the main results, cVAE removed more dataset dif-

erences at the expense of removing more biological information. 

One interesting deviation from the main results was that in the cur-

ent setup (where harmonization models were trained on matched par-

icipants), ComBat was statistically better than no harmonization across

ll six evaluation metrics. On the other hand, in the main analysis ( Figs.

–7 ; Tables 3–8 ), ComBat was statistically better than no harmonization

or both dataset prediction metrics, but statistically worse than no har-
12 
onization for all four downstream application performance metrics.

n the other hand, for the main analysis, gcVAE was statistically bet-

er than no harmonization for both dataset prediction metrics and two

ownstream application performance metrics. In the current analysis,

cVAE was statistically better than no harmonization for both dataset

rediction metrics and three downstream application performance met-

ics, but was statistically worse for one application performance metric.

herefore, gcVAE appeared more robust than ComBat to covariate dif-

erences during the harmonization procedure. 

. Discussion 

In this study, we proposed a flexible harmonization framework to

tilize downstream application performance to regularize the harmo-

ization model. Our proposed approach could be integrated with most

armonization approaches based on DNNs. Here, we integrated our

pproach with the cVAE model. Using three large-scale datasets, we

emonstrated that gcVAE compared favorably with ComBat and cVAE. 

We found that cVAE was able to significantly remove more dataset

ifferences than ComBat ( Fig. 5 ). This makes intuitive sense given that

VAE considered all brain regions jointly, so should theoretically be able

o remove multivariate site effects distributed across brain regions. How-

ver, the removal of more dataset differences came at the expense of also

emoving relevant biological information as measured by downstream

pplication performance ( Figs. 6 and 7 ). 

Indeed, the removal of relevant biological information was an issue

ot just for cVAE, but also for ComBat. In the case of predicting clinical

iagnosis and MMSE, the use of ComBat led to similar or worse perfor-

ance than not harmonizing at all. By constraining the harmonization

ith goal-specific DNNs, the gcVAE models were able to yield better pre-

iction of MMSE and clinical diagnosis ( Figs. 6 and 7 ), while removing

s much dataset differences as cVAE ( Fig. 5 ). 

In the case of clinical diagnosis prediction, gcVAE was able to yield

etter prediction performance than no harmonization. In the case of

MSE prediction, gcVAE was able to yield better prediction perfor-

ance than no harmonization in the MACC dataset, but was only able

o yield comparable prediction performance than no harmonization in

he AIBL dataset. 

Our main analyses ( Figs. 6 and 7 ) showed that gcVAE facilitated the

ranslation of goal-specific DNNs from ADNI to new datasets (AIBL and
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Fig. 8. Performance of harmonization models trained with different sample sizes . (A1) Dataset prediction accuracies for matched ADNI-AIBL participants; (B1) The 

clinical diagnosis prediction accuracies for matched AIBL participants; (C1) MMSE prediction errors for matched AIBL participants. (A2), (B2), and (C2) are the same 

as (A1), (B1), and (C1), but for matched ADNI and MACC participants. 
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ACC). Another common application of harmonization is to facilitate

he pooling of datasets for some joint analysis. Here, we investigated the

ssociation of the brain volumes with multiple variables across the har-

onized datasets. We found that gcVAE clearly outperformed no harmo-

ization ( Figs. 9 A and 10 A) and ComBat ( Figs. 9 B and 10 B). On the other

and, cVAE and gcVAE exhibited comparable performance ( Figs. 9 C and

0 C). 

.1. Matched versus unmatched participants 

We note that our workflow utilized unmatched participants to train

he harmonization models, dataset prediction models and goal-specific

NNs, while evaluation was performed on the matched participants

 Figs. 1 and 2 ). The setup allowed us to compare downstream appli-

ation performance between unharmonized data from matched ADNI

articipants and matched AIBL participants. Because age, sex, MMSE
13 
nd clinical diagnosis were similar between matched ADNI and AIBL

articipants, the drop in downstream application performance (clinical

iagnosis or MMSE prediction) could be attributed to a lack of harmo-

ization. Since the goal-specific DNNs were trained on ADNI ( Fig. 2 B),

he prediction performance on matched unharmonized ADNI partici-

ants served as an upper bound on the prediction performance after

armonization. 

Surprisingly, in the case of clinical diagnosis prediction in the AIBL

ataset, gcVAE was better than the upper bound ( Fig. 6 A). On the other

and, in the case of MMSE prediction in the AIBL dataset, gcVAE only

chieved similar performance as no harmonization and was worse than

he upper bound ( Fig. 7 A). One possible reason for this discrepancy is

hat when tuning the hyperparameters, the weights tradeoff the predic-

ion of MMSE and clinical diagnosis were fixed, so in the case of AIBL,

his might have inadvertently favored clinical diagnosis prediction more

han MMSE prediction. 
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Fig. 9. Association analyses between gray matter ROI volumes and four variables (age, MMSE, sex and clinical diagnosis) for matched ADNI and AIBL participants. 

First row shows association with age. Second row shows association with MMSE. Third row shows association with sex. Fourth row shows association with clinical 

diagnosis. (A) Comparison between gcVAE and no harmonization. (B) Comparison between gcVAE and ComBat. (C) Comparison between gcVAE and cVAE. Each black 

dot represents one gray matter ROI. Dots in the green area indicates better gcVAE performance compared with baseline. gcVAE clearly outperforms no harmonization 

and ComBat. gcVAE and cVAE exhibited similar performance. 
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However, we note that the current workflow of training on un-

atched participants can prove challenging for ComBat ( Nygaard et al.,

016 ; Zindler et al., 2020 ) because of covariate differences between

DNI and AIBL (as well ADNI and MACC). Therefore, we considered a

ontrol analysis in which the roles of the matched and unmatched partic-

pants were swapped. Consistent with the main analyses, we found that

cVAE compared favorably with both ComBat and cVAE (Figs. S4–S6;

ables S12–S17). Furthermore, in the control analysis, ComBat was bet-

er than no harmonization for both dataset prediction and downstream

pplication performance. On the other hand, in the control analysis,

cVAE was statistically better than no harmonization for both dataset

rediction metrics and three downstream application performance met-

ics, but was statistically worse for one application performance metric.

verall, this suggests that gcVAE was more robust than ComBat to co-

c  

14 
ariate differences between datasets used for the harmonization proce-

ure. 

.2. Sample size 

Deep neural networks are often thought to be data hungry. Across

ifferent sample sizes ( Fig. 8 ), gcVAE was better than cVAE for all four

ownstream application performance. On the other hand, across all sam-

le sizes, gcVAE was better than ComBat for three downstream predic-

ion metrics. Interestingly, gcVAE was worse than ComBat for MMSE

rediction in the AIBL dataset across all sample sizes but given the

apid improvement trajectory of gcVAE ( Fig. 8 C1), we might expect the

ap to close rapidly with more data. Surprisingly, as the sample size in-

reases, the downstream performance of gcVAE improved at the expense
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Fig. 10. Association analyses between gray matter ROI volumes and four variables (age, MMSE, sex and clinical diagnosis) for matched ADNI and MACC participants. 

First row shows association with age. Second row shows association with MMSE. Third row shows association with sex. Fourth row shows association with clinical 

diagnosis. (A) Comparison between gcVAE and no harmonization. (B) Comparison between gcVAE and ComBat. (C) Comparison between gcVAE and cVAE. Each black 

dot represents one gray matter ROI. Dots in the green area indicates better gcVAE performance compared with baseline. gcVAE clearly outperforms no harmonization 

and ComBat. gcVAE and cVAE exhibited similar performance. 
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f dataset prediction performance. However, the dataset prediction ac-

uracies of gcVAE continued to be worse (i.e., better harmonization)

han ComBat even with the full set of data ( Fig. 8 A). 

.3. Methodological considerations 

To illustrate the use of gcVAE, when harmonizing ADNI and a new

ataset, the researcher could validate gcVAE by repeating the same pro-

edure as the current study ( Figs. 2 and 3 ). Once the researcher is satis-

ed with the performance, the researcher could then train the model on

0% of the data and tune the hyperparameters on the remaining 10% of

he data without the need of a 10-fold cross-validation procedure. The

nal model can then be applied to the full dataset. 
15 
An interesting methodological consideration is the handling of con-

ound variables when using gcVAE. For example, age is likely related to

linical diagnosis. Therefore, when training gcVAE to harmonize ADNI

nd AIBL, the algorithm might seek to preserve age-related brain pat-

erns related to clinical diagnosis. However, we note that this may or

ay not be an issue depending on the study. For example, if our goal

s clinical diagnosis, then it would be counterproductive to exclude age

n the diagnosis procedure. After all, demographics are often used for

ifferential diagnosis in actual clinical practice. 

There might indeed be situations, where the related variables are

ndeed confounds. For example, if a study is interested in dementia risks

bove and beyond aging, then age does become a confound. In that

cenario, researchers could consider regressing age from the imaging

eatures and/or target variables before training the goal-specific DNN.
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nother approach is to include an adversarial cost when training the

oal-specific DNN to ensure the intermediate layers could not be used

o predict the confound variable (e.g., age). 

The theoretical advantage of gcVAE over ComBat is its multivari-

te nature, which allowed cVAE to remove site differences distributed

cross brain regions. This advantage is clearly demonstrated in the

ataset prediction experiments ( Fig. 5 ). More recent ComBat variants,

uch as CovBat ( Chen et al., 2019 ) allowed the harmonization of inter-

egional covariance. Given their multivariate nature, cVAE and gcVAE

hould also in principle remove site variation in covariance. 

Finally, our current study only demonstrated results from harmoniz-

ng pairs of datasets (ADNI and AIBL, as well as ADNI and MACC). How-

ver, the cVAE framework is highly flexible and the cVAE machinery can

e easily extended to multiple datasets. Similarly, the goal-specific DNN

ould also be trained on multiple datasets. So overall, gcVAE could in

rinciple be applied to harmonize multiple datasets jointly. However,

his is not something we have demonstrated in this study, which we

eave for future work. 

.4. Limitations 

The strength of gcVAE is also its main limitation. The reliance of

oal-specific DNNs led to better downstream performance, but the re-

ulting improvements might not generalize to new downstream appli-

ations. Therefore, the training procedure might have to be repeated

or each new downstream application. Future research is necessary to

ddress this limitation. 

. Conclusion 

In this study, we proposed a goal-specific brain MRI harmonization

ramework, which took into account downstream application perfor-

ance in the harmonization process. Using three large-scale datasets,

e demonstrated that our approach compared favorably with existing

pproaches in terms of preserving relevant biological information, while

emoving site differences. 
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